Abstract

Herein, a simple method is proposed for developing bimetallic Fe/M‐N4/nitrogen‐doped porous carbon (NPC) (M‐Zn or Mg) conductive metal–organic framework (c‐MOF) composites because of their great potential in replacing conventional catalysts. The prepared composite MOF exhibits remarkable catalytic activity for both hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR), surpassing the performance of the state‐of‐the‐art transition metal‐N4 cathode catalysts. These composites demonstrate excellent selectivity for a four‐electron transfer, facilitated by an associative reaction pathway that functions as the rate‐determining step. Therefore, they offer high half‐wave and onset potential values for ORR, i.e., 0.92 and 1.02 V for Fe/Mg‐N4‐NPC (hexaminobenzene (HAB)‐3@NPC) at a current density of 4.11 mA cm−2, and 0.89 and 0.99 V for Fe/Zn‐N4‐NPC (HAB‐2@NPC) at a current density of 3.8 mA cm−2, respectively. In addition, they provide low overpotentials of 21 and 64 mV at the current density of 10 mA cm−2 with Tafel slopes of 47.9 and 34.2 mV dec−1 for HER, respectively. Furthermore, when utilized as the cathode in bifunctional electrode assembly cells, they provide low cell voltages of 1.412 V at a current density of 20mA cm−2. In the membrane electrode assembly, the HAB‐3@NPC composite demonstrates an optimal power density of 0.861 Wcm−2, thus underscoring its potential in practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.