Abstract

Lotus-leaf-like nanofibrous surfaces were prepared by electrospinning hydrophobic poly(vinylidene fluoride) (PVDF) from a mixed solvent of N,N-dimethylformamide (DMF) and acetone. PVDF fibrous mats with a bead-on-string morphology were generated because the nonpolar acetone decresed the viscosity of the PVDF solution and promoted the evaporation of the solution during electrospinning process. The morphology of the nanofibirous surface was examined by scanning electron microscopy. Micron-sized beads were introduced to the electrospun PVDF mats, resulting in enhanced hydrophobicity of the electrospun mats. The addition of a small amount (0.05 vol%) of acetic acid to the polymer solution effectively improved the bead-on-string morphology of the electrospun mats, and led to a higher water contact angle (WCA). The electrospun PVDF fibrous mat showed a maximum WCA of 148.5° due to the appropriate surface roughness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call