Abstract
microRNAs (miRNAs) are short non-coding RNAs that have been increasingly recognized for their significant roles in the progression of cancer. Distinct miRNAs exhibit diverse functions attributed to variations in their sequences. As a result of possessing highly homologous seed sequences, these miRNAs target overlapping or similar gene sets, thus performing analogous roles. However, different from this sight, our study discovered that miR-135a-5p and miR-135b-5p, despite differing by only one nucleotide, exhibit distinct functional roles. Using non-small cell lung cancer (NSCLC) as a paradigm, our findings unveiled the downregulation of miR-135a-5p and upregulation of miR-135b-5p within NSCLC through TCGA database. Consequently, we further investigated their functional differences in A549 cells. Overexpression of miR-135b-5p enhanced the proliferation and migration capabilities of A549 cells, whereas miR-135a-5p transfection exhibited the opposite effect. We demonstrated that the activation of specific enhancers serves as a crucial mechanism underlying the disparate functions exerted by miR-135a-5p and miR-135b-5p in the context of NSCLC, consequently instigating a shift from inhibition to activation in NSCLC progression. Finally, we validated through animal experiments that miR-135b-5p promoted tumor progression, while miR-135a-5p exerted inhibitory effects on NSCLC development. This study offers a novel perspective for researchers to elucidate functional disparities exhibited by highly homologous miRNAs (miR-135a-5p and miR-135b-5p) in the context of NSCLC, along with the transition from inhibitory to progressive states in NSCLC. This study provides a solid foundation for future investigations into the functional roles of highly homologous miRNAs in pathological situation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.