Abstract

To explore highly effective and nonmetallic advanced oxidation process system to alleviate the persistent herbicides contamination in agricultural soils is of great importance. In this study, a significantly graphitized biochar with abundant C = O structure is prepared as non-metallic catalyst (WCGBC800). Different from other traditional amorphous pristine biochar, WCGBC800 can accelerate the electron transfer in the system and then effectively activate peroxymonosulfate (PMS) to produce free (OH, O2–, SO4−, etc.) and non-free radicals (1O2, electron transfer, etc.). Consequently, WCGBC800 can degrade 100 % the persistent organic herbicide quinclorac (QNC, with a content of 50 mg·kg−1) in soil within 20 min after PMS addition. The T.E.S.T-QSAR software simulation evidence that the toxicity of degradation intermediates is much lower than QNC. The stress of QNC on rice seedlings was directly described through rice cultivation experiment. The stress of rice seedlings was relieved after WCGBC800 + PMS treatment. The growth experiment of rice seedlings also shows that with an original QNC concentration of 7 mg·kg−1 in soil, the root length, root surface area, leaf length, leaf area, and leaves perimeter of rice increase of 255.30 %, 148.38 %, 207.64 %, 204.19 %, and 63.69 % respectively after detoxification by WCGBC800 + PMS system. This functional material and the WCGBC800 + PMS system provide new solutions for solving the problem of herbicide residues in soil with promising safety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call