Abstract

To expand our knowledge of the ontogeny of the T-cell receptor (TCR) repertoire of antigen-specific T-cell subsets, we combined next-generation deep sequencing and single-cell multiplex clonotype analysis to evaluate the diversity and frequency of paired TCRs, their functions and whether clonotypic TCRs are shared among different individuals. Using an HLA-A*02-restricted cytomegalovirus (CMV) pp65-derived immunogenic peptide, we found that the more dominant pp65-specific TCR clonotypes in the blood of healthy donors have higher binding affinities for the CMV peptide and arise from clonotypes that are highly shared among individuals. Interestingly, these highly shared HLA-A*02-restricted CMV-specific TCRs were detected in a CMV-seronegative individual as well as in HLA-A*02-negative donors albeit at lower frequency. More intriguingly, these shared TCR clonotypes were abundant in the stem memory T-cell subset, and TCR diversity of the stem memory T-cell repertoire was significantly lower than in the central memory and effector memory T-cell repertoires. These results suggest that the stem memory T-cell subset may serve as a reservoir of highly shared and highly functional memory T-cells.

Highlights

  • To expand our knowledge of the ontogeny of the T-cell receptor (TCR) repertoire of antigen-specific T-cell subsets, we combined next-generation deep sequencing and single-cell multiplex clonotype analysis to evaluate the diversity and frequency of paired TCRs, their functions and whether clonotypic TCRs are shared among different individuals

  • We evaluated the diversity of the unfractionated entire T-cell repertoire among the donors by calculating Simpson’s Diversity Index (SDI) using the next-generation sequencing (NGS) data

  • We evaluated the function of identified CMV NLV-specific TCRs by transducing these TCRs into T cells obtained from CMV-seronegative donors, because such knowledge is important for determining details of the mechanisms of cellular immunity in humans as well as for choosing a highly functional TCR suitable for personalized cellular immunotherapy[1, 2]

Read more

Summary

Introduction

To expand our knowledge of the ontogeny of the T-cell receptor (TCR) repertoire of antigen-specific T-cell subsets, we combined next-generation deep sequencing and single-cell multiplex clonotype analysis to evaluate the diversity and frequency of paired TCRs, their functions and whether clonotypic TCRs are shared among different individuals. Without this information, it is difficult to evaluate the antigen specificity of the identified TCRs and to conduct functional assays using T cells engineered to express those paired TCRαβ subunits To mitigate this disadvantage, we have developed an integrated methodology that comprehensively and simultaneously analyses paired TCRαβ repertoires and their function by combining semi-quantitative NGS with single-cell multiplex clonotypic analysis to clarify pairs of TCRαβ expressed on T cells at a single-cell level (designated as human T cell efficient cloning within 10 days, hTEC10)[3]. Certain well-screened functional TCRs shared between HLA-matched individuals are designated as public or shared TCRs7

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.