Abstract

We report the preparation of a highly fluoro-substituted crystalline covalent organic framework (COF) and its application as a cathode material in lithium-sulfur batteries (LSBs) upon sulfur confinement. A sulfur-functionalized COF with high sulfur content (60 wt %) was obtained through physisorption of elemental sulfur and subsequent SNAr reaction of sulfur with aromatic fluorides on the COF backbone. After such physical and chemical confinement of sulfur through a postfunctionalization approach, the COF material still shows some structural order, allowing us to investigate the structure-property relationship of such COF materials in LSB application. We compared the electrochemical performances of the two cathode materials prepared from a crystalline COF and its amorphous counterpart and studied the important factors that affect battery capacity, reaction kinetics, and cycling stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.