Abstract

The efficient synthesis of highly fluorescent para-biphenyl-substituted benzophospholes via zirconium-mediated metallacycle transfer is reported. A norbornene-appended benzophosphole oxide monomer was found to readily undergo living ring-opening metathesis polymerization with the Grubbs third-generation catalyst to yield either a homopolymer or block copolymers. The resulting block copolymers consisting of lipophilic alkylated- or pinacolboronate-capped comonomers undergo self-assembly into spherical micelles in tetrahydrofuran/hexanes mixtures, as determined by dynamic light scattering and transmission electron microscopy. One hallmark of the benzophosphole-containing polymers is their greatly enhanced emission intensity in solution in relation to their monomers, presumably due to a restriction in molecular motion upon formation of homopolymers or assembled block-copolymer micelles. Evidence for “analyte amplified precipitation” was found, wherein addition of a substoichiometric amount of fluoride to a b...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call