Abstract

A facile and scalable technique to fabricate optically transparent, mechanically flexible and self-cleanable superhydrophobic films for practical solar cell applications is proposed. The superhydrophobic films were fabricated simply by transferring a transparent porous alumina layer, which was prepared using an anodic aluminium oxidation (AAO) technique, onto a polyethylene terephthalate (PET) film with a UV-curable polymer adhesive layer, followed by the subsequent formation of alumina nano pyramids (NPs) through the time-controlled chemical etching of the transferred porous alumina membrane (PAM). It was found experimentally that the proposed functional films can ensure the superhydrophobicity in the Cassie-Baxter wetting mode with superior water-repellent properties through a series of experimental observations including static contact angle (SCA), contact angle hysteresis (CAH), sliding behaviour on the tilted film, and dynamic behaviour of the liquid droplet impacting on the film. In addition to the superior surface wetting properties, an optical transmittance of ∼79% at a light wavelength of 550 nm was achieved. Furthermore, there was no significant degradation in both the surface wetting properties and morphology even after 1500-cycles of repetitive bending tests, which indicates that the proposed superhydrophobic film is mechanically robust. Finally, the practicability of the proposed self-cleanable film was proven quantitatively by observing the changes in the power conversion efficiency (PCE) of a photovoltaic device covering the film before and after the cleaning process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.