Abstract

Cellulose nanofibril (CNF) aerogel is highly flammable and its mechanical strength is very soft, which is unfavourable due to safety concerns and impractical when used as the thermal insulation material. In this work, we used N-methylol dimethylphosphonopropionamide (MDPA) and 1,2,3,4-butanetetracarboxylic acid (BTCA) as co-additives and then prepared lightweight flame resistant CNF sponge-like aerogels via an eco-friendly freeze-drying and post cross-linking method. The CNF/BTCA/MDPA aerogel exhibited a better flame retardant performance, outstanding self-extinguishing behaviour and significantly increased char residue (by as much as 268%) compared with the neat CNF aerogel. Meanwhile, the resilience of the aerogel samples improved significantly as the flexibility decreased slightly. Furthermore, the aerogel samples still exhibited excellent thermal insulating properties with thermal conductivity as low as 0.03258W/(m k). The combination of these characteristics makes the CNF-based aerogel a promising insulation candidate for thermal protective equipment (e.g., fire-protection clothing or advanced spacesuit elements) in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.