Abstract

Amorphous nickel tungsten tetraoxide (NiWO4) nanostructures (NSs) were successfully synthesized on a flexible conductive fabric (CF) using a facile onestep electrochemical deposition (ED) method. With an applied external cathodic voltage (–1.8 V for 15 min), the amorphous NiWO4 NSs with burl-like morphologies adhered well on the seed-coated CF substrate. The burl-like amorphous NiWO4 NSs on CF (NiWO4 NSs/CF) are employed as a flexible and binder-free electrode for pseudocapacitors, which exhibit remarkable electrochemical properties with high specific capacitance (1,190.2 F/g at 2 A/g), excellent cyclic stability (92% at 10 A/g), and good rate capability (765.7 F/g at 20 A/g) in 1 M KOH electrolyte solution. The superior electrochemical properties can be ascribed to the hierarchical structure and large specific surface area of the burl-like amorphous NiWO4 NSs/CF. This cost-effective facile method for the synthesis of metal tungsten tetraoxide nanomaterials on a flexible CF could be promising for advanced electronic and energy storage device applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call