Abstract
AbstractAs the flexible wearable devices are developing rapidly, the requirement for energy storage devices with high energy and power density, excellent flexibility, and high reliability is increasing. Fiber‐shaped supercapacitors offering high power density and excellent flexibility have attracted widespread attention. However, the low energy density and poor reliability limit the practical application of these fiber‐shaped supercapacitors. To overcome these problems, a new zinc‐ion hybrid fiber supercapacitor (ZHFSC) is designed and realized. As both capacitor‐type and battery‐type energy storage mechanisms can be used, the energy density of ZHFSC is expected to be improved. Furthermore, the excellent self‐healability of poly(vinyl alcohol) (PVA)/Zn(CF3SO3)2 aqueous gel electrolyte contributes to the high reliability of the ZHFSC. As a proof of concept, the maximum power density and energy density of the ZHFSC are, respectively, as high as 1433.2 mW cm−3 and 13.1 mWh cm−3, and the capacitance retention, respectively, has the high values of 87.8% and 70.5% under the bending degree of 150° and after the fifth self‐healing. This study offers an efficient method to realize the high‐performance supercapacitors for flexible wearable devices in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.