Abstract
Why do highly fecund organisms apparently sacrifice offspring size for increased numbers when offspring survival generally increases with size? The theoretical tools for understanding this evolutionary trade-off between number and size of offspring have developed over the past 25 years; however, the absence of data on the relation between offspring size and fitness in highly fecund species, which would control for potentially confounding variables, has caused such models to remain largely hypothetical. Here we manipulate egg size, controlling for maternal trait interactions, and determine the causal consequences of offspring size in a wild population of Atlantic salmon. The joint effect of egg size on egg number and offspring survival resulted in stabilizing phenotypic selection for an optimal size. The optimal egg size differed only marginally from the mean value observed in the population, suggesting that it had evolved mainly in response to selection on maternal rather than offspring fitness. We conclude that maximization of maternal fitness by sacrificing offspring survival may well be a general phenomenon among highly fecund organisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.