Abstract

This paper presents a new nano-fibrillation method to produce highly expanded microcellular polypropylene (PP) foams with high thermal insulation properties. Polybutylene terephthalate (PBT) nano-fibrils were formed in the PP matrix through a melt spinning process to increase the foamability of PP resins which have inherently low melt strength. In this process, the two immiscible polymer phases are extruded and drawn into fibers. In the fiber composite, the PBT nano-fibrillar reinforcement phase typically has an average diameter of less than 200 nm. The results show that the presence of the long aspect-ratio nano-fibrils enhances the foamability of the PP matrix, and the foamed samples achieved high thermal insulation properties (~32 mW∙m−1∙K−1). As the capital investment and development time costs of the existing technologies for improving foamability are high, the new manufacturing method can provide significant economic and technical advantages for producing highly expanded and insulating PP-based foams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.