Abstract

Highly accurate quantum-mechanical calculations are presented for highly excited vibrational states of H2O. The vibration Hamiltonian operator Ĥvib for a nonlinear triatomic molecule is given in Radau coordinates. A direct product basis is chosen, and the Hvib matrix is evaluated in the discrete variable representation (DVR) for the symmetrized Radau coordinates. Vibrational eigenstates are computed from the DVR Hvib via the successive diagonalization/truncation technique. A comparison of the computed eigenvalues with those observed demonstrate the accuracy of our model. Highly excited vibrational states, up to 30 000 cm−1 above the zero-point energy, are reported for the potential energy surface (PES) given by Jensen [J. Mol. Phys., 133, 438 (1989)]. Using natural orbital expansions, the eigenfunctions of vibrational states are analyzed to understand the origins of the dynamical mixing of the vibrational modes. The local/normal mode transitions, Fermi resonances, Darling–Dennison interactions, and the mode separabilities are investigated. Statistical studies on the energy level spacings are presented for two different types of PES.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.