Abstract
AbstractQuantum dot (QD) color conversion‐based displays have emerged as one of the most promising next‐generation devices due to their superior emission properties in terms of color expression. To date, however, existing QD color conversion layer (QD‐CCL) technologies have suffered from low luminance and power efficiency, mainly due to significant light absorption by the bank structure. Here, the color conversion efficiency of QD‐CCL has been significantly enhanced by fabricating a highly reflective metal layer on the side surface of the bank structure. Using a high‐aspect‐ratio silver reflector fabricated through a secondary sputtering lithographic technique involving argon ion bombardment, the fabricated QD‐CCL is combined with a blue organic light‐emitting diode (OLED) serving as a light source. As a result, light recycling from the reflector significantly enhances color conversion efficiency and luminance by up to 4.60‐fold and 4.29‐fold, respectively. Optical simulation reveals that higher pixel resolution provides greater reflection probabilities during extraction. This photomask‐free approach is not only simple but also highly compatible with existing semiconductor fabrication processes, making it a viable commercial alternative for all color‐converting structures that utilize light‐emitting materials with omnidirectional emission characteristics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.