Abstract

The transformation of methane into high value-added chemicals such as aromatics provides a more desired approach towards sustainable chemistry but remains a critical challenge due to the low selectivity of aromatics and poor stability. Herein, we first report a coupling reaction of CH3 Cl and CO (CCTA) based on methane conversion, which achieves extremely high aromatics selectivity (82.2 %) with the selectivity of BTX up to ca. 60 % over HZSM-5. The promoting effects have been demonstrated on other zeolites especially 10-membered rings (10 MR) zeolites. Multiple characterizations show that 2,3-dimethyl-2-cyclopentene-1-one (DMCPO) is generated from acetyl groups and olefins. Furthermore, isotopic labeling analysis confirms that CO is inserted into the DMCPO and aromatics rings. A new aromatization mechanism is proposed, including the formation of the above intermediates, which conspicuously weakens the hydrogen transfer reaction, leading to a considerable increase of aromatics selectivity and a dramatic drop in alkanes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.