Abstract
A highly energy-conservative second-order-accurate finite difference method for the cylindrical coordinate system is developed. It is rigorously proved that energy conservation in discretized space is satisfied when appropriate interpolation schemes are used. This argument holds not only for an unequally spaced mesh but also for an equally spaced mesh on cylindrical coordinates but not on Cartesian coordinates. Numerical tests are undertaken for an inviscid flow with various schemes, and it turns out that the proposed scheme offers a superior energy-conservation property and greater stability than the intuitive and previously proposed methods, for both equally spaced and unequally spaced meshes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.