Abstract

The precise control of sensitivity to external stimuli, for example, impact, friction, and thermal energy, has been emphasized for highly energetic materials, including RDX and HMX. Such sensitivities could be controlled by adjusting the surface area or (in)organic additives; however, increased stability leads to a decrease in the explosives' performance. Here, high-energy-density molecules hosted in inverse opal-like porous carbon (IOC) nanocomposites demonstrate the mechanical stabilization and desensitization of RDX and HMX inside the carbon nanostructure using host-guest chemistry techniques. For this strategy, the uniform, vacant voids of the IOC were used to provide internal crystallization for the impact/frictional stabilization of explosives, and also to enhance the thermal reactivity by the high heat conductivity of IOC initiating detonation by thermally induced hotspot. The weight percentage of high explosives hosted by recrystallization at high temperatures and in vacuum reached ∼70%. After high explosives were embedded inside the IOC, the impact, friction and electrostatic stability was greatly increased (2-2.15-fold, 1.86-1.92-fold, and 1.25-2-fold, respectively) compared with free RDX and HMX. Also, addition of PVP as a binder controlled the effectiveness and efficiency of the carbon template, enabling control of the impact and friction sensitivity from 14.72 J to >79.43 J and from 295.81 to 352.80 N, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call