Abstract

HypothesisWater electrolysis performed by short (≲5μs) voltage pulses of alternating polarity generates a dense cloud of H2 and O2 nanobubbles. Platinum electrodes turn black in this process, while they behave differently when the polarity is not altered. We prove that the modification of Pt is associated with highly energetic impact of nanobubbles rather than with any electrochemical process.ExperimentsNanobubbles are generated by planar Pt or Ti microelectrodes. The process is driven by a series of alternating or single polarity pulses. In the case of Ti electrodes a Pt plate is separated by a gap from the electrodes. Nanoparticles on the surface of platinum are investigated with a scanning electron microscope and elemental composition is analysed using an energy-dispersive X-ray spectrometer.FindingsVigorous formation of Pt nanoparticles with a size of 10 nm is observed when the process is driven by the alternating polarity pulses. The effects of Pt corrosion have different character and cannot explain the phenomenon. Similar nanoparticles are observed when the Pt plate is exposed to a stream of nanobubbles. The process is explained by spontaneous combustion of hydrogen and oxygen nanobubbles on Pt surface. The phenomenon can be used to remove strongly adhered particles from solids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.