Abstract

We report on the VLS (vapour-liquid-solid) fabrication and characterization of in situ axially doped silicon nanowires (SiNWs) at both ends, and on their integration into a bottom gate-top contact geometry on both rigid and flexible substrates to realize field-effect transistors (FETs). To improve contact resistance between SiNWs and source/drain electrodes, we axially tuned the level of doping at both ends of the SiNWs by sequential in situ addition of PH(3). Characterisation of SiNWs by scanning spreading resistance microscopy in the device configuration allowed us to determine precisely the different sections of the SiNWs. The transfer to flexible substrates still allowed for workable FET structures. Transistors with electron mobilities exceeding 120 cm(2) V(-1) s(-1), I(on)/I(off) ratios greater than 10(7) and ambipolar behaviour were achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.