Abstract

In this report, we outline a highly enantio- and diastereoselective one-pot method for the efficient synthesis of synthetically useful acyclic epoxy alcohols and allylic epoxy alcohols. Our method takes advantage of a highly enantioselective C-C bond-forming reaction to set the initial chirality. The resulting allylic zinc alkoxide intermediate is then epoxidized in situ using either dioxygen or TBHP in the presence of a titanium tetraalkoxide. Epoxy alcohols with up to three contiguous stereocenters are formed in one pot with excellent enantio- and diastereoselectivity. In cases where the zinc alkoxide intermediates contain two different allylic olefins, the more electron-rich double bond is chemoselectively epoxidized to afford an allylic epoxy alcohol. This method represents a highly efficient, stereoselective, and chemoselective approach to the synthesis of a wide range of useful epoxy alcohol and allylic epoxy alcohol products that were previously difficult to access.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call