Abstract

Metallacycles hold great promise for fluorescence-based sensing due to their synthetic advantages and unique physicochemical properties. However, it remains highly challenging to develop a versatile methodology for constructing highly emissive metallacycles with targeted functionalities and therefore sought-after properties. Herein, we report a general strategy to construct a series of highly emissive perylene diimide-based metallacycles via the self-assembly of perylene diimide-based tetrapyridyl ligand with different dicarboxylic ligands featuring fixed angles and cis-Pt(PEt3)2(OTf)2. Single crystal X-ray diffraction analyses verify the formation of bowtie-like metallacycles with two triangular cavities. Notably, the fluorescence quantum yields of most assemblies exceed 98%, amongst the highest values for metallacycles. Additionally, such metallacycles exhibit sensitive fluorescence responses toward picric acid with a detection limit of 2.8 × 10−6 mol/L. This study not only provides a rational strategy for preparing highly emissive bowtie-shaped metallacycles, but also sheds light on their usage in the detection of picric acid and associated compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.