Abstract
AbstractAs rapidly growing environmental pollution demands the development of efficient photocatalytic materials, tremendous attention has been drawn to TiO2, a widely used photocatalytic material with cost‐effectiveness, stability, and outstanding reactivity. To maximize its photocatalytic efficiency by enhancing the photogenerated charge separation, lowering the intrinsically large bandgap (3.2 eV) of TiO2 is a key problem to be overcome. Herein, a new design is reported for an efficient photocatalyst realized by heterostructuring a 3D nanostructured TiO2 monolith (3D TiO2) and graphene quantum dots (GQDs) through using 3‐aminopropyltriethoxysilane (APTES) as a linker. The incorporation of APTES between the TiO2/GQD interface enables the formation of a charge injection‐type heterostructure, as confirmed by transient absorption spectroscopy, providing improvement of both visible absorption and charge separation. As a result, the heterostructure exhibits a 242% enhanced photocatalytic performance compared to that of nonheterostructured 3D TiO2 under visible irradiation, demonstrating its promising potential for practical photocatalytic applications in environmental remediation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.