Abstract

Optical antennas are a fundamental element in optical phased arrays (OPA) and free-space optical interconnects. An outstanding challenge in optical antenna design lies in achieving high radiation efficiency, ultra-compact footprint and broad radiation angle simultaneously, as required for dense 2D OPAs with a broad steering range. Here, we demonstrate a fundamentally new concept of a nanophotonic antenna based on near-field phase-engineering. By introducing a specific near-field phase factor in the Fraunhofer transformation, the far-field beam is widened beyond the diffraction limit for a given aperture size. We use transversally interleaved subwavelength grating nanostructures to control the near-field phase. A Bragg reflector is used at the end of the grating to increase both the efficiency and the far-field beam width. The antenna has a compact footprint of 3.1 µm × 1.75 µm and an ultra-broad far-field beam width of 52° and 62° in the longitudinal and transversal direction, respectively, while the radiation efficiency reaches 82% after incorporating a bottom reflector to further improve the directionality. This unprecedented design performance is achieved with a single-etch grating nanostructure in a 300-nm SOI platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.