Abstract

A series of two component phosphorescent organic light-emitting diodes (PHOLEDs) combing the direct hole injection into dopant strategy with a gradient doping profile were demonstrated. The dopant, host, as well as molybdenum oxide (MoO3)-modified indium tin oxide (ITO) anode were investigated. It is found that the devices ITO/MoO3 (0 or 1nm)/fac-tris(2-phenylpyridine)iridium [Ir(ppy)3]:1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBi) (30→0wt%, 105nm)/LiF (1nm)/Al (100nm) show maximum external quantum efficiency (EQE) over 20%, which are comparable to multi-layered PHOLEDs. Moreover, the systematic variation of the host from TPBi to 4,7-diphenyl-1,10-phenanthroline (Bphen), dopant from Ir(ppy)3 to bis(2-phenylpyridine)(acetylacetonate)iridium [Ir(ppy)2(acac)], and anodes between ITO and ITO/MoO3 indicates that balancing the charge as well as controlling the charge recombination zone play critical roles in the design of highly efficient two component PHOLEDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.