Abstract

Particulate matter (PM) pollution is a significant burden on global economies and public health. Most present air filters are heavy, bulky, and nontransparent and typically have inevitable compromise between removal efficiency and air permeability. We report a scalable strategy to create ultralight, thin, rubbery, self-assembled nanoarchitectured networks (nanonetworks) with high-efficiency and transparency (ULTRA NET) as air filters using capacitive-like electronetting technology. By controlling the ejection, deformation, and phase separation of charged droplets from a Taylor cone, our approach allows continuously welded two-dimensional nanonetworks (∼20 nm fiber diameter) to assemble into filters on a large scale. The resulting ULTRA NET filters exhibit integrated properties of desirable pore structure yet maintaining strikingly low thickness (∼350 nm) and free-standing capability, 99.98% removal efficiency, and <0.07% of atmosphere pressure for PM0.3 filtration at ∼85.6% transmittance, which enable them to serve as a multifunctional filter against PMs either in rigid solid or in soft oil forms and even biohazard pathogens. This work should serve as a source of inspiration for the design and development of high-performance fibrous materials for various filtration and separation applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.