Abstract

Using hybrid bilayer systems comprising a molecular organic semiconductor and silicon, we achieve optically controllable active terahertz (THz) modulators that exhibit extremely high modulation efficiencies. A modulation efficiency of 98% is achieved from thermally annealed C60/silicon bilayers, due to the rapid photo-induced electron transfer from the excited states of the silicon onto the C60 layer. Furthermore, we demonstrate the broadband modulation of THz waves. The cut-off condition of the system that is determined by the formation of efficient charge separation by the photo-excitation is highly variable, changing the system from insulating to metallic. The phenomenon enables an extremely high modulation bandwidth and rates of electromagnetic waves of interest. The realization of near-perfect modulation efficiency in THz frequencies opens up the possibilities of utilizing active modulators for THz spectroscopy and communications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call