Abstract

The development of large-area organic light-emitting diode (OLED) displays requires a highly efficient tandem device architecture and an easily processable charge generation layer (CGL) with a low voltage drop and high optical transparency. In this study, we investigated and applied a doped organic n-CGL/p-CGL using thermal vacuum deposition in tandem OLED devices. A doping concentration of 1.0 wt.% for Li in 4, 7-Diphenyl-1, 10-phenanthroline (BPhen) was optimal for the n-CGL with 8 wt.% for 2-(7-dicyanomethylene-1,3,4,5,6,8,9,10-octafluoro-7H-pyrene-2-ylidene)-malononitrile (NDP-9)-doped N,N-bis(4-methylphenyl)benzenamine (TAPC) as a p-CGL. Maximum luminous efficiencies of 42.5 and 63.4 cd/A and a 4,000 cd/m2 current density for the target luminance values of 11.2 and 6.5 mA/cm2 were demonstrated for double-stack and triple-stack tandem blue phosphorescent OLED devices, respectively. Implementing these highly efficient tandem device structures will improve the overall lifetime of OLED displays by lowering their operating current density at the target luminance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.