Abstract

New emitters that can harvest both singlet and triplet excited states to give 100% internal conversion of charge into light, are required to replace Ir based phosphors in organic light emitting diodes (OLEDs). Molecules that have a charge transfer (CT) excited state can potentially achieve this through the mechanism of thermally activated delayed fluorescence (TADF). Here, it is shown that a D–A charge transfer molecule in the solid state, can emit not only via an intramolecular charge transfer (ICT) excited state, but also from exciplex states, formed between the molecule and the host material. OLEDs based on a previously studied D–A–D molecule in a host TAPC achieves >14% external electroluminescence yield and shows nearly 100% efficient triplet harvesting. In these devices, it is unambiguously established that the triplet states are harvested via TADF, but more interestingly, these results are found to be independent of whether the emitter is the ICT state or the D–A–D/host exciplex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.