Abstract
The design of new materials with tunable properties and intrinsic recyclability, derived from biomass under mild conditions, stands as a gold standard in polymer chemistry. Reported herein are platinum complexes which catalyze the formation of poly(silylether)s (PSEs) at low catalyst loadings. These polymers are directly obtained from dual-functional biobased building blocks such as 5-hydroxymethylfurfural (HMF) or vanillin, coupled with various dihydrosilanes. Access to different types of copolymer architectures (statistical or alternating) is highlighted by several synthetic strategies. The materials obtained were then characterized as low Tg materials (ranging from -60 to 29 °C), stable upon heating (T-5% up to 301 °C) and resistant towards uncatalyzed methanolysis. Additionally, quantitative chemical recycling of several PSEs could be triggered by acid-catalyzed hydrolysis or methanolysis. These results emphasize the interest of biobased poly(silylether)s as sustainable materials with high recycling potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.