Abstract

Terminal vicinal diols are important chiral building blocks and intermediates in organic synthesis. Reduction of α-hydroxy ketones provides a straightforward approach to access these important compounds. In this study, it has been found that asymmetric reduction of a series of α-hydroxy aromatic ketones and 1-hydroxy-2-pentanone, catalyzed by Candida magnolia carbonyl reductase (CMCR) with glucose dehydrogenase (GDH) from Bacillus subtilis for cofactor regeneration, afforded 1-aryl-1,2-ethanediols and pentane-1,2-diol, respectively, in up to 99 % ee. In order to evaluate the efficiency of the bioreduction, lyophilized recombinant Escherichia coli whole cells coexpressing CMCR and GDH genes were used as the biocatalyst and α-hydroxy acetophenone as the model substrate, and the reaction conditions, such as pH, cosolvent, the amount of biocatalyst and the presences of a cofactor (i.e., NADP+), were optimized. Under the optimized conditions (pH 6, 16 h), the bioreduction proceeded smoothly at 1.0 m substrate concentration without the external addition of cofactor, and the product (S)-1-phenyl-1,2-ethanediol was isolated with 90 % yield and 99 % ee. This offers a practical biocatalytic method for the preparation of these important vicinal diols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call