Abstract
An NADH-dependent reductase (ScCR) from Streptomyces coelicolor was discovered by genome mining for carbonyl reductases. ScCR was overexpressed in Escherichia coli BL21, purified to homogeneity and its catalytic properties were studied. This enzyme catalyzed the asymmetric reduction of a broad range of prochiral ketones including aryl ketones, α- and β-ketoesters, with high activity and excellent enantioselectivity (>99% ee) towards β-ketoesters. Among them, ethyl 4-chloro-3-oxobutanoate (COBE) was efficiently converted to ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE), an important pharmaceutical intermediate, in water/toluene biphasic system. As much as 600g/L (3.6M) of COBE was asymmetrically reduced within 22h using 2-propanol as a co-substrate for NADH regeneration, resulting in a yield of 93%, an enantioselectivity of >99% ee, and a total turnover number (TTN) of 12,100. These results indicate the potential of ScCR for the industrial production of valuable chiral alcohols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.