Abstract

The depletion of fossil fuels calls for the development of renewable alternatives such as biodiesel and has inspired much research on catalysts for the production of biodiesel through the esterification of biomass-derived materials. Herein, a green heterogeneous catalyst for highly efficient biodiesel synthesis was fabricated from rice straw–derived cellulose, hematite, and zirconia and was shown to contain porous irregularly shaped α-Fe2O3–ZrO2 composites (average particle size = 42.5 nm) evenly distributed on the nanocellulose surface. The optimal catalyst (nanocellulose:α-Fe2O3–ZrO2 = 2:1, w/w) afforded biodiesel in a yield of 92.50% and with specifications close to those prescribed by international standards. This catalyst could be reused for up to five cycles without a marked activity loss, with the biodiesel yield in the fifth cycle equaling 80.0%. The developed nanocomposite holds great promise for cutting the costs of biodiesel production, as it is derived from biodegradable raw materials and is renewable, non-corrosive, easy to handle, and green. In addition, the large-scale discharge of this catalyst after use does not pose a hazard to the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.