Abstract

AbstractParametric infrared (IR) upconversion is a process in which low‐frequency IR photons are upconverted into high‐frequency ultraviolet/visible photons through a nonlinear optical process. It is of paramount importance for a wide range of security, material science, and healthcare applications. However, in general, the efficiencies of upconversion processes are typically extremely low for nanometer‐scale materials due to the short penetration depth of the excitation fields. Here, parametric IR upconversion processes, including frequency doubling and sum‐frequency generation, are studied in layered van der Waals NbOCl2. An upconversion efficiency of up to 0.004% is attained for the NbOCl2 nanosheets, orders of magnitude higher than previously reported values for nonlinear layered materials. The upconverted signal is sensitive to layer numbers, crystal orientation, excitation wavelength, and temperature, and it can be utilized as an optical cross‐correlator for ultrashort pulse characterization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call