Abstract

Poly(1,5-diaminoanthraquinone) (PDAA) has attracted more interest because of its unique molecular structure. However, the lower polymerization yield limits its practical application. Here, the solvothermal chemically oxidative polymerization of 1,5-diaminoanthraquinone (DAA) was developed, and the well-defined PDAA nanoflowers were obtained with a high yield of 72.6% within 16 h. The PDAA nanoflower-based flexible film electrodes were fabricated with expandable graphene as conductive support, delivering a capacitance of 277 F g-1 and 258 mF cm-2 at 0.5 A g-1 (1 mA cm-2) and superior cycling stability with retention of 99% after 10000 cycles. The flexible symmetric solid-state supercapacitors (SSSCs) possessed a high capacitance of 52.5 F g-1 at 0.25 A g-1 and 96.6 mF cm-2 at 1 mA cm-2 and had only a 14% capacitance loss after 10000 cycles at 0.1 V s-1 as well as excellent flexibility. Besides, the PDAA nanoflowers could be used as self-separable adsorbent for methylene blue (MB) with a capacity of 93.8 mg g-1 at pH 9.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call