Abstract
Solar steam generation (SSG) is a very promising desalination technology. However, new photothermal materials are still to be explored to further reduce the cost, and the device structure is still to be innovated to improve the structural integrality and evaporation performance. In this work, an all-in-one highly-efficient and self-floating jellyfish-like SSG (SFJ-SSG) is developed based on partially carbonized Enteromorpha (EA) aerogel (PCEAA). The carbonized top surface exhibits high solar absorption ability and excellent photothermal effect, while the uncarbonized EA retains the hydrophilicity and high-water transport capability due to the nature of tubular algal plant. Moreover, the heat produced by photothermal effect of the carbonized EA is confined at the top surface due to the thermal insulation of the uncarbonized layer, which is very beneficial for interfacial water evaporation. After optimizing the carbonization time and the height of the SFJ-SSG, a high evaporation rate of 1.87kgm-2h-1 is obtained under 1.0 sun irradiation, which outcompetes most SSG based on carbonized biomass. The development of SFJ-SSG based on EA not only minimizes the cost of SSG, but also solves the EA pollution, ensuring the broad prospect in practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.