Abstract

AbstractDeveloping a new strategy to improve the self‐assembly efficiency of functional assemblies in a confined space and construct hybrid functional materials is a significant and fascinating endeavor. Herein, we present a highly efficient strategy for achieving the supramolecular self‐assembly of well‐defined metallacages in microdroplets through continuous‐flow microfluidic devices. The high efficiency and versatility of this approach are demonstrated by the generation of five representative metallacages in different solvents containing water, DMF, acetonitrile, and methanol in a few minutes with nearly quantitative yields, in contrast to the yields obtained with the hour‐scale reaction time in a batch reactor. A ring‐opening catalytic reaction of the metallacages was selected as a model reaction for exploring supramolecular catalysis in microdroplets, whereby the catalytic yield was enhanced by 2.22‐fold compared to that of the same reaction in the batch reactor. This work illustrates a new promising approach for the self‐assembly of supramolecular systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.