Abstract
A novel combined dual microbial fuel cell (MFC) system was developed for the continuous removal of Victoria Blue R (VBR) and electricity generation. Anaerobic and aerobic VBR-degrading bacteria, Shewanella putrefaciens and Acinetobacter calcoaceticus, respectively, were applied simultaneously. The effects of various factors on the performance of the novel system in the continuous mode were investigated, and optimal operating parameters for the system were determined. The optimal liquid retention time for continuous treatment was 36 h. The optimal external resistances of connected MFCs were 390 Ω and 1300 Ω. When artificial wastewater containing 1000 mg/l of VBR was fed continuously into the system, the VBR removal efficiency achieved was 98.7%. In addition, the acute toxicity of the effluent was decreased by a factor of 21.1–22.3, indicating that the system could detoxify VBR intermediates. VBR degradation involved a stepwise demethylation process, which occurred mainly in the first MFC, whereas aromatic ring opening, sequential deamination reaction, and carbon oxidation occurred mainly in the second MFC. When actual VBR-containing wastewater (75–262 mg/l) was introduced, the removal efficiencies of VBR, chemical oxygen demand, colority, NH3, and bioelectricity generation were >99.8%, >96.6%, >88.0%, 100%, and >194.8 mW/m2, respectively and the original inoculated strains remained dominant. Therefore, the combined dual MFC system could be applied to the treatment of actual VBR-containing wastewater.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.