Abstract

Efficient removal of pollutants in the atmosphere is of great significance to human health and environmental restoration. Herein, we report the preparation of a self-supporting conjugated microporous polymers (CMPs) membrane (SS-CMPs-M) synthesized by Sonogashira-Hagihara (S–H) cross-coupling reaction using KBr tables as a template. The intrinsic hydrophobic chemical composition made it good hydrophobicity and lipophilicity, e.g., the water contact angles (WCA) for SS-CMPs-M were measured to be 113°. The aromatic building blocks of CMPs make SS-CMPs-M exceptionally stable physicochemical properties, i.e., the membrane exists stably below 300 °C, and they were insoluble in organic solvents. Additionally, the as-resulted SS-CMPs-M-1 which also presents mesoporous architecture shows effectively captures performance for particulate matter (PM) with different particle sizes in the air, the removal efficiency of PM2.5 and PM10 are 99.7% and 99.9%, respectively. For volatile organic compounds (VOCs) vapor in the air, the SS-CMPs-M-1 shows an excellent purification effect, the removal efficiency of formaldehyde in the simulated air is above 97%, and the AQI value of the filtered gas (>500) is reduced to 50. Taking advantage of its simple and scalable manufacture, the SS-CMPs-M-1 may have great potential as an advanced membrane for the separation and elimination of PM in different environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call