Abstract

The efficient and waste-free recovery of heavy metals is critical for heavy metal wastewater treatment. In this work, we explored how heavy metals can be recovered as valuable chemicals in the presence of crystal seeds. Hydrotalcite (one kind of layered double hydroxides (LDHs)) was used as crystal seeds to recover Zn2+ in the presence of Al3+ from water (i.e., seed-Zn2+-Al3+ system), which was compared with the monometallic heterogeneous system (seed-Zn2+) and direct coprecipitation (Zn2+-Al3+) system. Our results demonstrated that the seed-Zn2+-Al3+ system possessed a recovery rate of 2.6–2.8 times and a recovery kinetic rate of 2.7–5.9 times higher than those of the other two systems. Differing from the latter two systems, hydrotalcite seeds could induce Zn2+ and Al3+ to form ZnAl-LDH in seed-Zn2+-Al3+. Interestingly, the ZnAl-LDH presents a compositional divalent/trivalent cation molar ratio of ca. 3, which is comparable with the value in the hydrotalcite. It was demonstrated that the hydrotalcite seeds could act as a template to significantly induce the formation of ZnAl-LDH complying with the seed's structure and compositional ratio. Similar induction effect of seeds as the Zn2+ system was further verified in Cu2+ systems. This work provides a novel strategy for efficient recovery of heavy metals with product selectivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.