Abstract

A highly efficient quasi-optical mode converter with a bandwidth of 38 GHz has been designed and tested. The mode converter combines low-diffraction losses and a Gaussian mode content up to 97% for a set of nine modes in the range of 105 to 143 GHz for a 1-MW CW gyrotron. This was achieved using a dimpled-wall waveguide antenna (launcher), one quasi-elliptical mirror, and two toroidal mirrors. The optimization of the launcher was done using coupled-mode theory. The simulation results show a well-focused Gaussian beam for all nine operating modes. The curvature radii of the toroidal mirrors were determined by Gaussian mode transformation (ABCD-law) and subsequently optimized for a multimode operation. The simulations of the quasi-optical mode converter are based on the electric field integral equation and, thus, are 3-D. Experimental low-power measurements show close agreement with predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.