Abstract

Due to the complexity of harmful wastewater components, environmental and multifunctional materials are required for sewage purification. In this paper, a novel kidney-bean-skin-like hydrophilic porous polyacrylonitrile/reduced graphene oxide-g-poly(amidoxime)-loaded Ag+ (H-PPAN/rGO-g-PAO@Ag+/Ag) composite nanofiber membrane was fabricated by combining electrospinning and hydrolysis methods. The spinning solution was pumped at a rate of 0.4 mL/h with the voltage set at a constant value of 23 kV. Then, some of the -CN groups switched to hydrophilic -COOH groups via a hydrolysis method, which acts as a linker of GO-g-PAN, Ag+, and the polyacrylonitrile (PAN) matrix. A further step of chelation and thermal treatment were used for generating Schottky junctions between rGO-g-PAO@Ag+ and Ag. After five-cycle tests, it exhibited outstanding mechanical properties ensuring the filtration and purification performance of the H-PPAN/rGO-g-PAO@Ag+/Ag composite nanofiber membrane (i.e., the tensile strength was still 7.21 MPa, and the elongation was 61.53%) for simulated wastewater. The methods of thermal treatment and high-pressure Hg lamp irradiation promoted the reduction of GO to rGO and Ag+ to Ag particles, which endows the final product H-PPAN/rGO-g-PAO@Ag+/Ag with excellent photocatalytic and bactericidal properties. Its catalytic efficiency for dyes benzoic acid (BA), Rhodamine B (RhB), methylene blue (MB), and methyl orange (MO) was up to 99.8, 98, 95, and 91%. The antibacterial rate was 100% against Escherichia coli and 99% against Staphylococcus aureus. More importantly, the photocatalytic and antibacterial PAN-based nanofiber membrane can be simply scaled up, which provides the membrane with great potential in highly efficient wastewater treatment and augmenting water supply.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call