Abstract

Periodic hexagonal gold crystal spherical nanoparticle arrays with controllable size and periodicity are fabricated by physical vapor deposition and further heat treatment based on monolayer colloidal crystal template. The size and center-to-center spacing of nanoparticles (NPs) were manipulated conveniently by tuning the deposition thickness of Au film and the size of colloidal spheres of the template, respectively. The thickness range of deposited Au film dependent on the size of colloidal spheres was investigated comprehensively. Dewetting model was established and employed to analyze the whole process of the evolution from gold film to spherical nanoparticle with uniform size. Additionally, localized surface plasmon resonance (LSPR) responses of these Au nanoparticle arrays were systematically measured. It is found that the extinction properties are significantly influenced by the particle size and periodicity of arrays. With the increase of particle size, the LSPR peak shows a red shift due to the quantum size effect of the nanoscaled Au particle. Meanwhile, the diffraction peaks also show small red shift due to a slight increase of average refractive index of arrays. This is highly helpful to improve its practical applications for detecting biochemical molecules based on LSPR and diffraction peak sensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call