Abstract
Fabricating dual-phase hollow-fiber membranes via a one-step thermal processing (OSTP) approach is challenging, because of complex sintering kinetics and the subsequent impacts on membrane morphology, phase stability, and permeation properties. In this study, we have demonstrated that Ce0.8Sm0.2O2-δ-SrCo0.9Nb0.1O3-δ (SDC-SCN) four-channel hollow fiber membrane can be manufactured via a single high-temperature sintering process, by using metal oxides and carbonates directly as membrane materials (sources of metal ions). It has been found that use of a low ramping rate reduces grain sizes, increases grain and forming cobalt oxide nanoparticles, a key step to promoting surface exchange process followed by enhancing oxygen permeation. While the grain boundary interface region can be limited to approximately 20–30 nm. At 1173 K oxygen permeation of the SDC-SCN four-channel hollow fiber membrane was measured at approximately 1.2 mL cm−2·min−1 using helium as the sweep gas. Meanwhile, the dual-phase membrane shows a good tolerance to carbon dioxide, with the oxygen permeation flux fully recovered after long-term exposure to carbon dioxide (more than 100 h). This will enable further application of the OSTP approach for preparing dual-phase multi-channel hollow fiber membranes for applications of oxyfuel combustion, catalytic membrane reactors and carbon dioxide capture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.