Abstract

Integrated optics provides a platform for the experimental implementation of highly complex and compact circuits for practical applications as well as for advances in the fundamental science of quantum optics. The lithium niobate (LN) waveguide is an important candidate for the construction of integrated optical circuits. Based on the bound state in the continuum (BIC) in a LN waveguide, we propose an efficient way to produce polarization-entangled photon pairs. The implementation of this method is simple and does not require the polarization process needed for periodically poled LN. The generation rate of the entangled photon pairs increases linearly with the length of the waveguide. For visible light, the generation efficiency can be improved by more than five orders of magnitude with waveguides having the length of only a few millimeters, compared with the corresponding case without BICs. The phenomena can appear in a very wide spectrum range from the visible to THz regions. This study is of great significance for the development of active integrated quantum chips in various wavelength ranges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.