Abstract

Solar-driven CO2 methanation is an imperative and promising approach to relieve the global warming and environmental crisis, yet remains a great challenge due to the low reaction efficiency, unsatisfactory selectivity and poor stability. In this work, we demonstrate a facile and efficient strategy to prepare Ru-doped TiO2 photocatalyst with tunable oxygen vacancies using the ascorbic acid as a reducing agent for the CO2 methanation reaction. The optimal Ru-TiO2-OV-50 exhibits a remarkable CH4 production rate of 81.7 mmol g−1 h−1 with a 100% CH4 selectivity under a 1.5 W cm−2 light illumination, which is significantly higher than commercial Ru/TiO2 and other reported catalysts. We reveal that the superior photocatalytic CO2 methanation performance is mainly due to the synergistic effect of Ru doping and TiO2 with tunable oxygen vacancies. Impressively, the light rather than thermal effect is confirmed as the main influencing factor by experimental studies. In addition, in situ spectroscopic technology is performed to investigate the CO2 methanation reaction pathway. This work will open an avenue to design and prepare highly efficient photocatalyst with tunable oxygen vacancies for CO2 conversion and other related applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.