Abstract
Water pollution and energy crisis are becoming global and strategic issues that people are closely concerned about. Green and energy-saving photocatalytic technology is developing rapidly in solving global energy crises and environmental pollution problems. Therefore, we propose the “kill two birds with one stone” strategy to design efficient photocatalysts for dye wastewater treatment by utilizing heavy metal ions in wastewater. The adsorption properties of Mordenite (MOR) were utilized to removal heavy metal ions (Cd2+ and Zn2+) from waste water, and the adsorbed heavy metal ions were dried and sulfurized to obtain CdS/ZnS/MOR(ZnCdM). Then, g-C3N4 was ultrasonically dispersed and composited with ZnCdM by self-assembly, 25 wt% ZnCdCM photocatalytic material was obtained with a degradation rate of 99.8% in 1.5 h for Rhodamine B(RhB). It was found that MOR can provid adequate support for active substances, and the surface of MOR with smaller sizes of CdS nanoparticles, ZnS nanoparticles and g-C3N4 nanosheets, which increased the specific surface area of the materials and improved the reactivity. The porous structure of MOR is favorable for the enrichment of RhB, and the electric field effect of MOR leads to the decrease of the photogenerated carrier complex rate in the semiconductor, which increases the catalytic efficiency. In addition, the double Z charge transfer mechanism formed by CdS, ZnS, g-C3N4 is favorable for separating photogenerated carriers. These synergistic effects improved the photocatalytic efficiency. This strategy will be a green and promising solution to water pollution and energy crisis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.