Abstract
Novel Ag/Fe2O3/BiOI Z-scheme heterostructures are first fabricated through a facile hydrothermal method. The composition and properties of as-synthesized Ag/Fe2O3/BiOI nanocomposites are characterized by powder X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, UV-Vis diffuse reflectance spectra, etc. The Ag/Fe2O3/BiOI systems exhibit remarkable degradation performance for tetracycline (TC). In particular, the composite (Ag/Fe2O3/BiOI-2) shows the highest efficiency when the contents of Ag and α-Fe2O3 are 2 wt% and 15%, respectively. The effects of operating parameters, including the solution pH, H2O2 concentration, TC concentration, and catalyst concentration, on the degradation efficiency are investigated. The photo-Fenton mechanism is studied, and the results indicated that •O2- is the main active specie for TC degradation. The enhanced performance of Ag/Fe2O3/BiOI heterostructures may be ascribed to the synergic effect between photocatalysis and the Fenton reaction. The formation of Ag/Fe2O3/BiOI heterojunction is beneficial to the transfer and separation of charge carriers. The photo-generated electrons accelerate the Fe2+/Fe3+ cycle and create the reductive reaction of H2O2. This research reveals that the Ag/Fe2O3/BiOI composite possesses great potential in wastewater treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.