Abstract

Ni modified MoO3 (Ni-MoO3) had been synthesized by a facile one-step hydrothermal technique and was used for oxidative desulfurization (ODS) of dibenzothiophene (DBT) in the decalin/acetonitrile biphasic system with H2O2 as oxidant, the effect of different operating conditions was investigated. Under the optimal reaction condition, Ni-MoO3 catalyst showed excellent ODS performance toward DBT, the highest sulfur removal efficiency can be up to 99.8% and sulfur content was wiped out from 5000 to 10 ppm, which is more effective than the recent reported MoO3-based catalysts. The reaction kinetics obeyed the pseudo-first-order equation with an apparent rate constant of 0.076 min−1, which is twice that of pure MoO3 (0.035 min−1). The ODS mechanism of DBT with Ni-MoO3 was explored by combining radical scavenger, FT-IR experiments and theoretical analysis, proving that surface oxygen vacancies and Lewis acid sites play important roles in the high-efficiency ODS reaction with Ni-MoO3 catalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call