Abstract

AbstractOxidative cyanation of aldehydes provides a promising strategy for the cyanide‐free synthesis of organic nitriles. Design of robust and cost‐effective catalysts is the key for this route. Herein, we designed a series of Se,S,N‐tri‐doped carbon nanosheets with a hierarchical porous structure (denoted as Se,S,N‐CNs‐x, x represents the pyrolysis temperature). It was found that the obtained Se,S,N‐CNs‐1000 was very selective and efficient for oxidative cyanation of various aldehydes including those containing other oxidizable groups into the corresponding nitriles using ammonia as the nitrogen resource below 100 °C. Detailed investigations revealed that the excellent performance of Se,S,N‐CNs‐1000 originated mainly from the graphitic‐N species with lower electron density and synergistic effect between the Se, S, N, and C in the catalyst. Besides, the hierarchically porous structure could also promote the reaction. Notably, the unique feature of this metal‐free catalyst is that it tolerated other oxidizable groups, and showed no activity on further reaction of the products, thereby resulting in high selectivity. As far as we know, this is the first work for the synthesis of nitriles via oxidative cyanation of aldehydes over heterogeneous metal‐free catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.